Lecture 8: Genetic variants and their interpretation

Paolo Provero

NGS and genetic variants

NGS techniques allow us to detect the *genetic variants* that characterize each individual

- Targeted sequencing: detect variants in selected regions
 - Whole Exome Sequencing
 - Sequencing of candidate genes or exons
 - The smaller the target the greater the sequencing *depth* with the same number of reads
- Whole genome sequencing

Variant detection

VCF format

To save space, the variants are expressed as *differences* from the reference sequence

##fileformat=VCFv4.0	
##fileDate=20090805	
##source=myImputationProgramV3.1	
##reference=1000GenomesPilot-NCBI36	
##phasing=partial	
##INFO= <id=ns,number=1,type=integer,description="number data"="" of="" samples="" with=""></id=ns,number=1,type=integer,description="number>	
##INFO= <id=dp,number=1,type=integer,description="total depth"=""></id=dp,number=1,type=integer,description="total>	
##INFO= <id=af,number=type=float,description="allele frequency"=""></id=af,number=type=float,description="allele>	
##INFO= <id=aa,number=1,type=string,description="ancestral allele"=""></id=aa,number=1,type=string,description="ancestral>	
##INF0= <id=db.number=0.type=flag.description="dbsnp 129"="" build="" membership,=""></id=db.number=0.type=flag.description="dbsnp>	
##INF0= <id=h2.number=0.type=flag.description="hapmap2 membership"=""></id=h2.number=0.type=flag.description="hapmap2>	
##FILTER= <id=g10.description="ouality 10"="" below=""></id=g10.description="ouality>	
##FILTER= <id=s50.description="less 50%="" data"="" have="" of="" samples="" than=""></id=s50.description="less>	
##FORMAT= <id=gt.number=1.type=string.description="genotype"></id=gt.number=1.type=string.description="genotype">	
##FORMAT= <id=gq.number=1,type=integer,description="genotype quality"=""></id=gq.number=1,type=integer,description="genotype>	
##FORMAT= <id=dp.number=1.type=integer.description="read depth"=""></id=dp.number=1.type=integer.description="read>	
##FORMAT= <id=h0.number=2.type=integer.description="haplotype quality"=""></id=h0.number=2.type=integer.description="haplotype>	
#CHROM POS ID REF ALT QUAL FILTER INFO	FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3:DP=14:AF=0.5:DB:H2	GT:G0:DP:H0 0 0:48:1:51.51 1 0:48:8:51.51 1/1:43:5:
20 17330 . T A 3 g10 NS=3:DP=11:AF=0.017	GT:G0:DP:H0 0 0:49:3:58.50 0 1:3:5:65.3 0/0:41:3
	=T;DB GT:GQ:DP:HQ 1/2:21:6:23,27 2/1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3:DP=13:AA=T	GT:GQ:DP:HQ 0 0:54:7:56,60 0 0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTCT G,GTACT 50 PASS NS=3;DP=9;AA=G	GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
20 1234307 m20103002 0101 0,01A01 30 PA33 N3=3,0P=5,AA=0	0/2.1/.2 1/1.40.3

Variant interpretation

Problem: determine which variants are causal of a phenotype/disease

- Mendelian phenotypes
 - rare variants
 - high penetrance
 - in coding regions
- Complex phenotypes
 - common variants
 - non-coding regions

Effect on the phenotype

The likelihood that a variant will affect the phenotype depends on where the variant is located (coding exon, UTR, intron, intergenic)

- Coding variants can be classified based on their effect on the protein sequence
 - synonymous: no change in protein sequence (possible due to the degenerate nature of the genetic code)
 - missense: changes one aminoacid into another
 - conservative: new aa is chemically similar to old one
 - non-conservative: new aa is chemically different likely change in structure
 - nonsense: introduces a stop codon
- Non-coding variants are assumed to affect phenotype by changing gene regulation
 - e.g. by creating/destroying a transcription factor binding site
 - much more difficult to classify/interpret

Coding variants: the XLMR example

ARTICLES

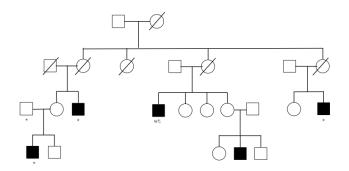
A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

Patrick S Tarpey¹, Raffaella Smith¹, Erin Pleasance¹, Annabel Whibley², Sanh Edkins¹, Claire Hardy¹, Sarah O'Meara¹, Calli Latimer¹, Ed Dicks¹, Andrew Menzies¹, Phil Stephens¹, Matt Blow¹, Chris Greenman¹, Yali Xue¹, Chris Tyler-Smith¹, Deborah Thompson³, Kristian Gray¹, Jenny Andrews³, Syd Barthorpe¹, Gemma Buck¹, Jennifer Cole¹, Rebecca Dunmore¹, David Jones¹, Mark Maddison¹, Tatiana Mironenko¹, Rachel Turner¹, Kelly Turrel¹, Jennifer Varian¹, Softe West¹, Saraw Miada¹, Paul Wan¹, Ion Teague¹, Adam Butler¹, Andrew Jenkinson¹, Mingming Jia¹, David Richardson¹, Rebecca Shepherd¹, Richard Wooster¹, M Isabel Tejada⁴, Francisco Martinez⁵, Gemma Carvill⁶, Rene Goliath⁶, Arjan P M de Brouwe², Hans van Bokhover², Hilde Van Esch⁵, Jamel Chell⁹, Martine Raynaud¹⁰, Hans-Hilger Ropers¹¹, Fatima E Abidi¹², Anand K Srivastava¹², James Cox², Ying Luo⁵, Uma Malya², Jenny Moon², Josef Parnau², Shehla Mohammed¹³, John L Tolmie¹⁴, Cheryl Shoubridge¹⁵, Mark Corbett¹⁵, Tod Fullston¹⁵, Duggas F Easton³, Jackie Boyle⁶, Michael Partington⁶, Anna Hacket¹⁶, Michael Field¹⁶, Cindy Skinne¹², Roger E Stevenson¹², Martin Bobrow², Gillian Turne¹⁶. Charles E Schwartz¹², Jozef Gecz^{15,17}, F Lucy Raymond², P Andrew Futreal¹ & Michael R Straton^{1,18}


Nature Genetics 2009

Coding variants: the XLMR example

- 208 families with MR and pattern of transmission compatible with X linkage
- Exome sequencing of \sim 700 genes in X chromosome
- Most differences in coding sequence between individuals are recurring and found in dbSNP
- Consider *truncating* variants only (found in 30 genes)


Segregation

A variant can be *causal* of the disease only if it *segregates* - presence of the variant in all affected members and only in affected members

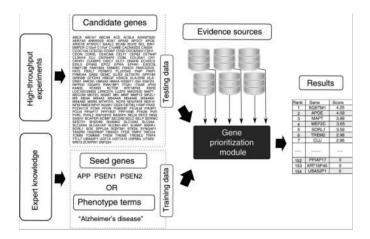
Non-segregation

Family 74 ITIH5L (NM_198510.1) IVS7+1ins T

Message

- Exome sequencing can help finding causal variants of Mendelian diseases
- However even truncating variants can be compatible with normal phenotype
 - "loss of function of 1% of the genes in the X chromosome is compatible with apparently normal existence"
- Another recent study found an average of ~40 homozygous LOF mutations in normal individuals
- Therefore when sequencing the exome of a *proband* with a genetic disease we expect to find many candidate mutations
 - Need for *variant prioritization*

Variant prioritization

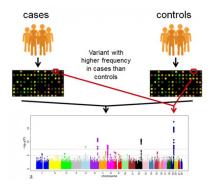

Problem:

• Among all the variants found in a proband with a genetic disease, find the ones most likely to be causative

The following criteria increase the probability that a variant is causative

- very low frequency in the population
- predicted strong effect on the protein
- gene involved in biological process relevant to the disease
- gene interacts with genes involved in the same/similar diseases

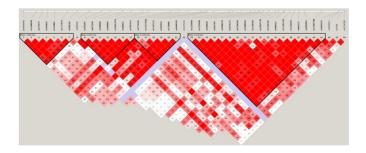
Variant prioritization


From Zolotareva & Kleine, J Integr Bioinform 16:20180069 (2019).

Complex phenotypes

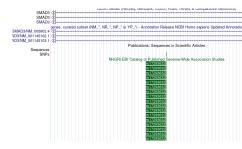
- Complex trait: determined by both genetic and non-genetic (e.g. environmental, behavioral, ...) factors
 - Diabetes
 - Rheumatoid arthritis
 - Crohn disease
 - Height
 - Blood pressure
 - Lymphocyte count
- Genetic determinants are usually
 - Many variants of small effect
 - Non-coding (hence presumably regulatory)

GWAS

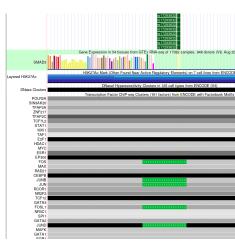

Genome-wide associations studies look for variants with significantly different frequency in cases and controls

Predicting vs understanding complex traits

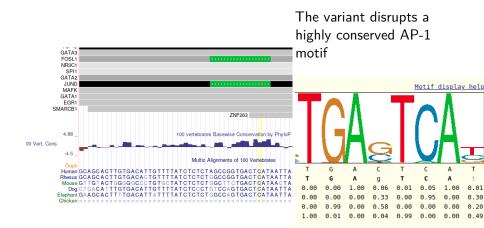
- GWAS hits can be used to build *polygenic scores* predicting disease risk
- To understand disease (hence possibly find cures) one needs to understand the mechanism leading from variant to disease
- GWAS hits are mostly non-coding \rightarrow regulatory effect
 - What is the *target* of a regulatory variant (gene whose expression is altered by the variant)?
 - What is the effect of the variant?
 - Regulatory code much less understood than genetic code
 - Which one is the causal variant?
 - Linkage disequilibrium implies that many neighboring variants are inherited together, thus showing the same correlation with the disease although presumably only one or a few are causative


Linkage disequilibrium

Strong coorelation between nearby SNPs indicate that they are inherited together (no recombination events)


An example: rs17293632

- Associated by GWAS to many complex traits, including Crohn's disease
- Located in an intron of SMAD3



An example: rs17293632

- Colocalizes with several transcription factor binding peaks from ChIP-seq
- In particular, is within the core binding motif of AP-1

An example: rs17293632

Interpreting rs17293632

- The variant rs17293632 disrupts a highly conserved (hence, probably functional) AP-1 binding site
- Thus altering gene expression, presumably of SMAD3
- Thus altering the phenotype, e.g. by conferring susceptibility to Crohn's disease

Genetic and epigenetic fine mapping of causal autoimmune disease variants

Kyle Kai-How Farh^{1,2}*, Alexander Marson³*, Jiang Zhu^{1,4,5,6}, Markus Kleinewietfeld^{1,7}*, William J. Housley⁷, Samantha Beik¹, Noam Shoresh¹, Holly Whitton¹, Russell J. H. Ryan^{1,5}, Alexander A. Shishkin^{1,8}, Meital Hatan¹, Marlene J. Carrasco-Alfonso⁶, Dita Mayer⁹, C. John Luckey⁹, Nikolaos A. Patsopoulos^{1,10,11}, Philip L. De Jager^{1,10,11}, Vijay K. Kuchroo¹², Charles B. Epstein¹, Mark J. Daly^{1,2}, David A. Hafler^{1,7}\$ & Bradley E. Berstein^{1,4,5,6}\$

eQTLs

To understand GWAS hits we need a systematic analysis of the effect of variants on gene expression.

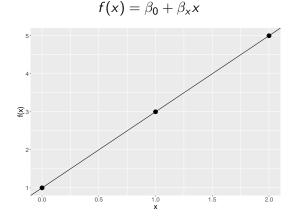
An eQTL (expression quantitative trait locus) is a variant significantly associated with the expression of a gene - gene expression considered as a *quantitative trait*, like height or lymphocyte count

An eQTL study needs a large cohort (hundreds of individuals) for which we have

- expression data
- genotyping (i.e. *dosage* [0,1, or 2] of each genetic variant)

The analysis is performed by *linear regression*

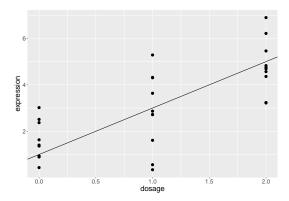
Regression


- *Regression* is the main statistical method for the study of the *dependence* among two (or more) variables *x* and *y*
- Assumes the existence of a *regression function* f(x) which represents the true dependence of y on x as

$$y = f(x) + \epsilon$$

- In our case:
 - x: dosage of a variant $(x \in \{0, 1, 2\})$
 - y: expression of a gene
- The error term ϵ represents random fluctuations, or the effects of variables that we do not consider
 - e.g. environmetal effects on the expression y of the gene

Linear regression


In *linear regression* we assume f(x) to be a straight line:

In our case this means that we consider the effects of the paternal and maternal alleles on gene expression as independent and additive.

Error term

If the regression function is linear we expect, considering the error term ϵ , the actual measurements to look like this

Estimating β_0 and β_x

Given the data:

dosage x_i (i = 1...N) and expression y_i (i = 1...N) for a large number N of individuals

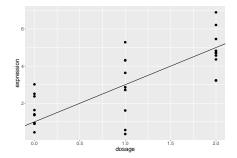
our first goal is to estimate the regression function, i.e. the values of β_0 and $\beta_x.$

This is done by choosing the values that minimize the *mean square error*

$$MSE = \sum_{i=1}^{N} (y_i - f(x_i))^2 = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_x x_i)^2$$

Is this an eQTL?

Regression function:


$$f(x) = \beta_0 + \beta_x x$$

The variant is called an eQTL for the gene if $\beta_x \neq 0$ (if $\beta_x = 0$ expression does *not* actually depend on the variant dosage).

- Null hypothesis: $\beta_x = 0$
- Regression algorithms provide us not only with the value of β_x (and β_0) but also with their *uncertainties*
- These can be used to *test* the null hypothesis and obtain a *P*-value
- Small P-values indicate that
 - the null hypothesis is probably false
 - that is, $\beta_x \neq 0$
 - that is, the variant dosage does indeed affect the expression of the gene
 - that is, the variant is an eQTL of the gene

Example

For our (fake) data

- the estimated β_x is 1.64
- with an uncertainty (standard error) of 0.277
- so that it is very unlikely that the true β_x is 0
- indeed the *P*-value is $2.36 \ 10^{-6}$.

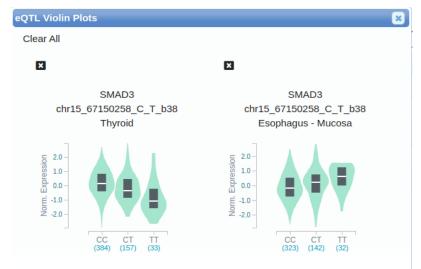
The GTEx project

The GTEx Consortium atlas of genetic regulatory effects across human tissues

THE GTEX CONSORTIUM

SCIENCE · 11 Sep 2020 · Vol 369, Issue 6509 · pp. 1318-1330 · DOI: 10.1126/science.aaz1776

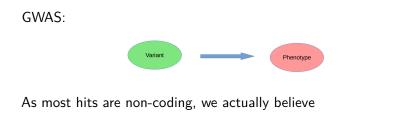
- eQTLs can be tissue-specific
- e.g. by altering the binding site of a brain-specific TF
- GTEx: eQTL analysis in ~50 human tissues
 - analyze all variants within 1 Mb of each gene


Back to rs17293632

GTEx confirms that rs17293632 is an eQTL of SMAD3 in two tissues (but also of other neignboring genes)

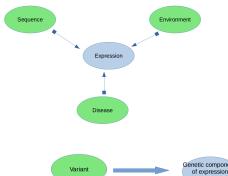
Copy CSV								
Gencode Id 0	Gene Symbol 🛛 🗘	Variant Id	SNP	٥	P-Value 0	NES 🛈 🗘	Tissue	
ENSG00000166949.15	SMAD3	chr15_67150258_C_T_b38	rs17293632	dbSNP 🗗	5.8e-30	-0.48	Thyroid	
ENSG00000166949.15	SMAD3	chr15_67150258_C_T_b38	rs17293632	dbSNP 🗗	0.0000038	0.22	Esophagus - Mucos	
ENSG00000103591.12	AAGAB	chr15_67150258_C_T_b38	rs17293632	dbSNP 🗗	0.000017	-0.13	Whole Blood	
ENSG00000103591.12	AAGAB	chr15_67150258_C_T_b38	rs17293632	dbSNP 🗗	0.000064	-0.10	Esophagus - Mucos	
ENSG00000033800.13	PIAS1	chr15_67150258_C_T_b38	rs17293632	dbSNP 🗹	0.00024	0.094	Thyroid	

Tissue-dependent effects


The effect of the variant on SMAD3 expression depends on the tissue:

GWAS and eQTLs

- eQTLs are useful in interpreting variants found by GWAS to be associated to complex traits/diseases
- Enrichment of eQTLs has been found among GWAS hits
- Recently a more global approach to the use of eQTLs has emerged: intermediate molecular phenotypes
 - In particular, transcriptome-wide association studies (TWAS)


Gene expression as an intermediate molecular phenotypes

Gene expression is an intermediate molecular phenotype

Components of gene expression

- Gene expression is not determined solely by genetics (sequence)
- However only the genetic component of gene expression (GREx) can mediate between variants and disease

Transcriptome-wide association studies

genetics

TECHNICAL REPORTS

A gene-based association method for mapping traits using reference transcriptome data

Eric R Gamazon^{1,2,9}, Heather E Wheeler^{3,9}, Kaanan P Shah^{1,9}, Sahar V Mozaffari¹, Keston Aquino-Michaels¹, Robert J Carroll², Anne E Eyler⁶, Joshua C Denny², GTEx Consortium⁷, Dan L Nicolae^{1,4,4}, Nancy J Cox^{1,2,4} & Hae Kyung Im¹

- Use eQTL data from control individuals (e.g. GTEx) to build a model predicting expression from genotype
- Use the models to compute the *GREx* of all genes for the GWAS diseased and control individuals
- Look for genes whose GREx correlates with the disease
- Genetic variants affect the disease through the expression of these genes
- The genes might be *therapeutic targets*

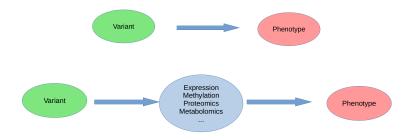
Other molecular QTLs

Article | Open Access | Published: 19 September 2019

Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease

Tianulae Huan €3, Roby Joehanes, Ci Song, Fen Peng, Yichen Guo, Michael Mendelson, Chen Yao, Chunyu Liu, Jiantao Ma, Melissa Richard, Golareh Agha, Weihua Guan, Lynn M. Almili, Karen N. Conneely, Johua Keefe, Shih-Juen Huang, Andrew D. Johnson, Myriam Fornage, Liming Liang ⊕3, Baniel Levy ⊕

Nature Communications 10, Article number: 4267 (2019) | Cite this article 5934 Accesses | 17 Citations | 3 Altmetric | Metrics


Pooled ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk

Astiely K. Tofaranchi, 'Mania Maythil,' Torov Marin, 'J. Bran L. He,' David Golan,'' and Hunter B. Fraser'' "Department of local Social Subardo Warrely, Stater CA 84350, USA "Department of Astimat Gametia, University of Desagn, Cheago, L. 66837, USA "Department of Casteria" "Demarkation of Casteria" "Demarkation of Casteria"

A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection

George Nicholson 🛃 Mattias Rantalainen, Jia V. Li, Anthony D. Maher, Daviel Mahnodin, Kourosh R. Ahmadi, Johan H. Faber, Amy Barrett, Josine L. Min, N. William Rayner, Henrik Tolt, Maria Krestyaninova, Juris Viksna, [...].Chris C. Holmes 🗃 (www al]

Intermediate molecular phenotypes

TWAS generalizations

Use other molecular phenotypes as intermediate phenotypes...

PWAS: proteome-wide association study—linking genes and phenotypes by functional variation in proteins

Nadav Brandes^{1*}¹, Nathan Linial¹ and Michal Linial^{2*}

... or even macroscopic phenotypes

Imaging-wide association study: Integrating imaging endophenotypes in GWAS

Zhiyuan Xu, Chong Wu, Wei Pan^{*}, for the Alzheimer's Disease Neuroimaging Initiative¹ Division of Biostaristics, School of Public Health, University of Minnesona, Minneapolis, MN 53455, USA

Summary

Understanding the relationship between variants and phenotypes/diseases presents different challenges for Mendelian and complex phenotypes

- Mendelian diseases: find the causal coding variant through *variant prioritization*
- Complex diseases: understand the effect of many variants on gene regulation

In both cases the understanding of the causal relationship can in principle lead to new therapeutic strategies